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1. Introduction 

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
caused the COVID-19 disease pandemic. SARS-CoV-2 has a positive-sense single-strand RNA 
genome [(+)ssRNA] and belongs to the genus Betacoronavirus of the Coronaviridae family within 
the Nidovirales order of viruses [1]. The COVID-19 disease is a potentially fatal respiratory disease 
characterized by atypical pneumonia [2]. The unavailability of specific medications to treat COVID-
19 has led to drug repositioning efforts using various approaches [3–5], including computational 
analyses. In this study, we trained several machine learning algorithms and used them together with 
a molecular docking approach to screen for antiviral and anti-inflammatory drugs with potential 
activity against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), a key component of the 
virus replication machinery. Based on the ligand information of RdRp inhibitors, the machine 
learning models used in this study were able to identify candidates such as remdesivir, a molecule 
with documented activity against RdRp of the novel coronavirus. 

2. Coronaviruses and SARS-CoV-2 
2.1 Overview 

Apart from infecting different animals, coronaviruses can cause respiratory infections in humans 
ranging in scale from mild to severe. In the past two decades, three highly pathogenic coronaviruses 
with fatal outcomes emerged in humans, namely severe acute respiratory syndrome coronavirus 
(SARS-CoV) in 2002, Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 [6] and 
the novel coronavirus SARS-CoV-2 in 2019. The latter caused coronavirus disease 2019 (COVID-
19) with the symptoms of unusual pneumonia. Due to its high transmissibility the novel coronavirus 
quickly spread around the globe and surpassed both SARS and MERS in terms of the number of 
infected patients and fatal outcomes. 

2.2 Emergence and Spread of SARS-CoV-2 

In late December 2019, clusters of patients with pneumonia of unknown cause were reported by 
several health facilities in Wuhan, China [7].These patients showed symptoms of viral pneumonia, 
including fever, cough and chest discomfort, and in severe cases dyspnea and bilateral lung 
infiltration, similar to patients with SARS and MERS [7,8]. Among the first documented hospitalized 
patients, most cases were epidemiologically linked to a wet market located in downtown Wuhan, the 
Huanan Seafood Wholesale Market [9,10]. On 31st of December, Wuhan Municipal Health 
Commission notified the public of a pneumonia outbreak of unidentified cause and informed the 
World Health Organization (WHO) [11].   

 
 

2.3 Genomic Characterization of SARS-CoV-2 



SARS-CoV-2 was reported to be 79% and 50% genetically identical with SARS-CoV and MERS-
CoV, respectively.[12]. Genome organization is similar to the other betacoronaviruses, and SARS-
CoV-2 has six open reading frames (ORFs). From 5′ to 3′, replicase (ORF1a/ORF1b) is followed by 
spike (S), envelope (E), membrane (M), and nucleocapsid (N) ORFs. Moreover, accessory proteins 
are encoded in seven putative ORFs that can be found between the structural genes [1].  The length 
for most of the SARS-CoV-2 proteins shows similarity to their corresponding counterparts in the 
SARS-CoV. With the exception for the S gene, other structural genes in SARS-CoV-2 and SARS-
CoV share more than 90% amino acid sequence identity [12]. At the 5′  end, replicase gene is found 
that covers two thirds of the genome and encodes a large polyprotein (pp1ab). Pp1ab protein is 
subsequently cleaved into 16 non-structural proteins that play role in viral replication. These non-
structural proteins share strong amino acid sequence identity of more than 85% with SARS-CoV [1]. 

2.4 Why targeting SARS-CoV-2 RdRp? 

RdRps are multi-domain proteins able to catalyze the RNA synthesis from RNA templates, and are 
responsible for the viral genome replication and transcription processes [13]. Conserved nature and 
involvement in the essential role of viral replication makes RdRps attractive for antiviral drug 
development. 
 
Nidovirales order, to which the Coronavirus genus belongs, are characterized by a complex 
machinery dedicated to RNA synthesis, that is operated by non-structural proteins (nsps), being 
produced as cleavage products of the ORF1a and ORF1b viral polyproteins to facilitate virus 
replication and transcription [14]. 
 

Entrance of the virus into the host cells is crucial for the initiation of infection. SARS-CoV-2 
utilizes the receptor-binding domain on the viral spike (S) protein to bind to the angiotensin 
converting enzyme 2 (ACE2) on host cells and enters the cells via endosomal pathway [15].  Once 
inside the cells, viral genomic RNA is released, serving as a template for translation of the viral 
proteins and for making copies of the viral genome. RNA dependent RNA polymerase (RdRp), also 
known as non-structural protein 12 (nsp12), is a crucial component of the viral replicase complex 
responsible for the production of genomic RNA for new virions [16].  
 

Due to the central role of RdRps in the replication of RNA viruses, almost all RNA viruses have 
an RdRp encoded in their genome. Despite relatively poor sequence similarity, RdRps from different 
RNA viruses share structural similarity resembling a right hand with thumb, palm, and fingers 
subdomains, which is also similar to reverse transcriptases. Sequence analyses of RdRps from various 
viruses revealed conservation of key residues in the active sites as well as in the palm domains [13,17–
19]. The structure of SARS-CoV-2 RdRp was resolved and reported. The general architecture of 
RdRps, presence of conserved motifs A-G, conservation of key catalytic amino acids as well as 
structural similarity to Hepatitis C virus (HCV) and poliovirus RdRp was confirmed [20]. RdRps are 
considered important therapeutic targets due to their crucial role in the viral replication cycle and 
absence of a counterpart in humans, which can reduce the risk of having undesired side effects during 
treatment. 

 

3. Application of Artificial Intelligence in Drug Repositioning 
3.1 Molecular Docking vs Machine Learning Approaches 



The urgent need for effective therapeutic agents against SARS-CoV-2 has resulted in numerous 
studies focusing on identifying potential drug candidates. A significant amount of in silico drug 
discovery reports has been published[5,21–24] recently that propose various candidates for drug 
repurposing against different protein targets of SARS-CoV-2. Most of those studies utilized 
conventional molecular docking analyses for which the information on the 3D structure of the target 
and ligand is necessary.  Once this information is available, docking simulation can be performed 
against a specified region on the target protein to predict binding energy between protein and the 
ligand. Obtaining a 3D structure for the target proteins is a challenging, expensive, and lengthy 
process. Moreover, good binding energy does not necessarily mean good inhibition by the ligand. To 
circumvent the challenges associated with the molecular docking approaches, use of machine learning 
algorithms has been increasingly gaining attention. 

3.2 AI applications in SARS-CoV-2 drug repurposing 

Recent technological developments in the applications of machine learning to drug discovery have 
shown that it is potentially possible to facilitate the conventional process and reduce the cost for the 
discovery of new drugs [25,26]. Several artificial intelligence approaches are recently being explored 
as an alternative that can help researchers find potential drug candidates in a relatively short period 
even in cases where the 3D structure information is not available.  
 
UK-based BenevolentAI incorporated biomedical information obtained from the scientific literature 
into their AI knowledge graph in order to identify inhibitors of the host protein AAK1. As a result, 
they identified Baricitinib, which is used for treatment of rheumatoid arthritis. Baricitinib was 
predicted to inhibit viral infection by targeting clathrin-mediated endocytosis [4]. Moreover, in 
addition to its potential anti-viral activity, it is possible that the anti-inflammatory nature of bariticinib 
might be helpful for the inflammation observed in COVID-19 patients [27]. Beck et al. applied their 
Deep Learning-based  Molecule Transformer-Drug Target Interaction (MT-DTI) model to predict 
SARS-CoV-2 protease and helicase enzyme inhibitors from the commercially available antiviral 
drugs. The model architecture uses simplified molecular-input line-entry system (SMILES) strings 
and amino acid sequences as input thus allowing to use target proteins for which confirmed 3D 
structure is not available [3]. Atomwise, which is based in US, aims to develop a new broad-spectrum 
antivirals by targeting highly conserved protein regions in SARS-CoV-2. Together with their 15 
research partnerships, they screen millions of small molecules against these targets using their deep 
convolutional network AtomNet [28], to be further tested in the in vitro assays [29]. 
 
Structural similarities between RdRps of several viruses, conservation of key amino acids in the active 
site as well as identification of broad-spectrum anti-RdRp drug Remdesivir indicated to potential 
similarity patterns in the chemical structures of effective RdRp inhibitors. This led us to implement 
supervised machine learning algorithms for the identification of potential RdRp inhibitors. 
 

4. Discovery of SARS-CoV-2 RdRp Inhibitors 
4.1 Dataset Curation and Model Training 

 
We established a dataset containing small molecules with the experimentally confirmed activity 
values against RNA dependent RNA polymerases of Hepatitis C Virus (HCV), Dengue virus, 
Poliovirus, and Influenza virus. Dataset was obtained from PubChem [30] and ChEMBL [31] 
bioassays. Entries with known experimental activity values (IC50/EC50) were selected and assigned 
binary activity labels based on the activity values to train classification models. The cutoff threshold 
of activity for training was set at 5µM. The final dataset included 1356 (656 inactive, 700 active) 
compounds with activity labels. An equal number of active and inactive compounds, amounting to 



20% of the whole dataset, were randomly selected and used as a validation set. The remaining 80% 
was used as a training set. Molecules exerted inhibitory activity against hepatitis C virus (HCV), 
poliovirus, dengue virus, and influenza virus RdRps. By using these inhibitors to train machine 
learning models we expected our model to learn the chemical features of effective RdRp inhibitors. 
We then evaluated the ability of our models in identifying known pre-clinical and clinical RdRp 
inhibitors. Finally, we used our models to screen FDA approved antiviral and anti-inflammatory drugs 
to identify potential candidates with inhibitory activity against RdRps. We also performed molecular 
docking analysis of the antiviral and anti-inflammatory drugs against the SARS-CoV-2 RdRp protein. 
For our machine learning models, compounds were converted to molecular fingerprints using RdKit 
[32], which in turn were used as input features. We experimented both with circular (Morgan 
fingerprints) [33] and topological fingerprints. The topological fingerprints were computed by 
extracting all subgraphs of a compound with a minimum of 1 and a maximum of 7 number of bonds. 
To implement the models, we mainly relied on the scikit-learn library [34]. 
 

Several models achieved an area under the receiver operating characteristic curve (ROC-AUC) 
score of over 0.8, namely, the graph convolutional network, the message passing network, the random 
forest classifier (both fingerprint types), the ridge classifier (with circular fingerprints), the lasso 
classifier (with topological fingerprints), the 3 layered multilayer perceptron (with circular 
fingerprints), and the XGBoost classifier (with topological fingerprints). One of them, the random 
forest classifier on circular fingerprints even surpassed 0.9 in terms of ROC-AUC. In terms of 
accuracy, the best result of 84% was also observed with the random forest classifier.  

  
4.2 Model Evaluation on a test set of pre-clinical RdRp inhibitors 
 
To validate the results, we used 3 best models (based on ROC-AUC score) to run inference on the 

test set of known pre-clinical RdRp inhibitors. In addition to the ROC-AUC and the accuracy scores, 
we also report the percentage of true positives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN) cases. The result is described in Table 1.1. 
 

Table 1.1: Performance of the best 3 models on the test set.  

Model AUROC ACC 
Confidence 

Interval 
(alpha=0.05) 

TP TN FP FN 

GraphConv 0.700 0.700 [0.558, 0.842] 0.65 0.75 0.25 0.35 
RandomForest (C) 0.725 0.725 [0.587, 0.863] 0.50 0.95 0.05 0.50 
3-layer MLP (C) 0.625 0.625 [0.475, 0.775] 0.50 0.75 0.25 0.50 

Abbreviations: AUROC, area under the receiver operating characteristic curve; ACC, accuracy; 
TP, true positives; TN, true negatives; FP, false positives; FN, false negatives. 

Models like the Random Forest classifier were very good at detecting negative examples (a true 
negative rate of 95%), however, the number of detected positive cases was also affected and the 
model was able to detect half of the active molecules (true positive rate of 50%). Other models, like 
the Graph Convolutional Models, can detect more active molecules (true positive rate of 65%), but 
the true negative rate drops to 75%, and more false positives are detected. Furthermore, the 
correlation between the outputs of different models was not very high, therefore, we thought that an 
ensemble model might improve the overall performance. 



 
A plain Support Vector Machine with an "RBF" kernel worked the best in our experiments. 

The model used the outputs of the 10 best models as input features. We first trained the individual 
models on the original training set. Then, the validation set was split into 2 equal subsets; one of them 
was used to train the ensemble model, while the second one was set aside as the validation set. The 
ensemble model slightly outperformed all individual models on the test set (Table 1.2). 

Table 1.2: Ensemble model results. 

Dataset AUROC ACC 
Confidence 

Interval 
(alpha=0.05) 

TP TN FP FN 

Validation  0.875 0.875 [0.819, 0.931] 0.871 0.879 0.129 0.121 
Test 0.750 0.750 [0.616, 0.884] 0.600 0.900 0.100 0.400 

Abbreviations: ROC-AUC, area under the receiver operating characteristic curve; ACC, accuracy; 
TP, true positives; TN, true negatives; FP, false positives; FN, false negatives. 

Models were evaluated based on performance on the validation set and a test set of known pre-clinical 
RdRp inhibitors. Three best performing separate models and the best ensemble model were chosen 
for the inference analyses. Since only ligand information was used to train the models and no 3D 
structure of the target SARS-CoV-2 RdRp was used, we wanted to compare our approach to the 
conventional molecular docking approach, which is based on the 3D structure information of protein 
target and ligands. We performed virtual screening of the antiviral and anti-inflammatory datasets 
against the active site of SARS-CoV-2 RdRp (PDB ID: 6m71) using AutoDock Vina [35]. 
 

5. Combining machine learning and docking simulation results 
5.1 Results on antiviral dataset 

 
Our analyses identified several candidates from both antiviral and anti-inflammatory datasets. From 
the antiviral dataset our models were able to identify Remdesivir, a nucleoside analog confirmed to 
target SARS-CoV-2 RdRp that was approved by the US FDA for treatment of COVID-19 patients. 
Remdesivir was included in the test set as a positive control.  Interestingly, baloxavir marboxil, TMC-
310911 (ASC09), and umifenovir (Arbidol) identified by our models have been investigated in 
clinical trials for COVID-19. Clinical trial registration and identification numbers are 
ChiCTR2000029544  for baloxavir marboxil, NCT04261907 for ASC09, and NCT04350684 for 
umifenovir. Baloxavir marboxil acts on RdRp of Influenza virus [36], while TMC-310911 is a 
protease inhibitor developed against HIV-1 [37], and umifenovir is an anti-influenza drug that 
perturbs virus entry into the cells by targeting hemagglutinin (HA) glycoprotein [38].  
In addition to these drug candidates, all four of our best performing models identified beclabuvir 

and asunaprevir as potential RdRp inhibitors from the antiviral dataset. Beclabuvir is a non-
nucleoside inhibitor of HCV RdRp (NS5B) [39]. Similar to SARS-CoV-2, HCV is also a single-
stranded enveloped positive-sense RNA virus. The active site of both SARS-CoV-2 and HCV RdRp 
show a degree of structural similarity and they both share the same conserved amino acids in the 
catalytic site [20]. Binding energy calculations of beclabuvir (-9.2 kcal/mol) towards SARS-CoV-2 
RdRp in our experiments also suggest the inhibitory potential of this candidate. Asunaprevir, another 
anti-HCV drug, is known to target the protease of HCV. Interestingly, all of our best models identified 
asunaprevir as a potential anti-RdRp candidate, but the binding energy calculation using AutoDock 
Vina was -7.5 kcal/mol. Among other candidates both being predicted by at least two of our best 



models and having relatively low binding energy towards SARS-CoV-2 RdRp were paritaprevir, 
faldaprevir, simeprevir, vedroprevir (HCV protease inhibitors), ledipasvir, odalasvir, and velpatasvir 
(HCV NS5A inhibitors) Please refer to the Table 1.3 for the complete list. Our models were trained 
only on RdRp inhibitors, however, several anti-HCV drugs targeting either protease or NS5A protein 
of the HCV were classified as potential RdRp inhibitors. Interestingly, those candidate molecules also 
had good binding energy predictions towards SARS-CoV-2 RdRp based on molecular docking 
analysis. Experimental validation is necessary to confirm whether these molecules act on RdRp or 
not.  
 

Table 1.3: Antiviral drugs predicted to act on RdRps along with the binding 
energy values against SARS-CoV-2 RdRp (PDB ID 6m71) calculated using 

AutoDock Vina. 

Compound Predicted by # of models Binding energy to SARS-
CoV-2 RdRp (kcal/mol) 

Beclabuvir 4 -9.2 
Asunaprevir 4 -7.5 
Paritaprevir 3 -10.5 
Faldaprevir 3 -9.6 
Odalasvir 3 -8.8 
Simeprevir 3 -8.7 
Vedroprevir 3 -8.6 
Velpatasvir 3 -8.6 
Telaprevir 3 -8.3 
Dolutegravir 3 -8.0 
Sofosbuvir 3 -6.9 
Uprifosbuvir 3 -6.8 
Entecavir 3 -6.6 
Lobucavir 3 -6.6 
Trifluridine 3 -6.3 
Nevirapine 3 -6.1 
Ledipasvir 2 -9.2 
Ruzasvir 2 -8.1 
Baloxavir marboxil 2 -8.0 
TMC-310911(ASC09) 2 -7.9 
Adafosbuvir 2 -7.8 
Remdesivir 2 -7.5 
Saquinavir 2 -7.2 
Abacavir 2 -7.1 
Maribavir 2 -7.1 
Elvitegravir 2 -6.6 
Vidarabine 2 -6.5 
Efavirenz 2 -6.3 
Valganciclovir 2 -6.2 
Valomaciclovir 2 -6.2 
Sorivudine 2 -6.1 



Ibacitabine 2 -6.1 
Idoxuridine 2 -5.9 
Fialuridine 2 -5.9 
Didanosine 2 -5.8 
Umifenovir 2 -5.8 
   

 
 

             
 
 
5.2 Results on anti-inflammatory dataset 
 

Effective antiviral drugs can help reduce the viral load in the patients, however, they do not address 
virus-induced pneumonia directly. This pneumonia is a result of inflammation in the lungs caused by 
SARS-CoV-2 [40]. Thus COVID-19 patients who have developed pneumonia might need additional 
therapeutic intervention to suppress the inflammation in the lungs. The ability of our models to 
identify RdRp inhibitors from the antiviral set motivated us to run the inference analyses on a set of 
anti-inflammatory drugs. As in the analysis of the antiviral set, we focused on both RdRp inhibitor 
signature and binding energy predictions against SARS-CoV-2 RdRp. Analysis of the anti-
inflammatory dataset revealed that all of our best models predicted betulinic acid and lupeol, both 
natural products, to possess anti-RdRp activity. Lifitegrast, antrafenine, ursolic acid, dexamethasone 
acetate, prednisolone phosphate were other candidates predicted by at least two of our models and 
are also predicted to bind to the active site of SARS-CoV-2 RdRp with binding energy in the range 
between -7.5 to -9.5 kcal/mol (Table 1.4). Interestingly, both betulinic acid and ursolic acid are 
pentacyclic triterpenoids with documented antiviral activity against HIV [41]. 

 

Table 1.4: Anti-inflammatory drugs predicted to act on RdRps along with the 
binding energy values against SARS-CoV-2 RdRp (PDB ID 6m71) calculated 

using AutoDock Vina. 

Compound Predicted by # of models Binding affinity to SARS-
CoV-2 RdRp (kcal/mol) 

Betulinic Acid 4 -7.4 
Lupeol 4 -7.2 
Lifitegrast 3 -9.5 
Antrafenine 3 -8.7 
Ursolic acid 3 -8.0 
Floctafenine 3 -7.1 
Cimicoxib 3 -7.0 
Acemetacin 3 -6.8 
Morniflumate 3 -6.8 
Loteprednol 3 -6.8 
Polmacoxib 3 -6.8 
Andrographolide 3 -6.7 
Dexamethasone acetate 2 -7.6 



Prednisolone phosphate 2 -7.5 
Cortisone acetate 2 -7.3 
Mometasone furoate 2 -7.3 
Prednicarbate 2 -7.1 
Deflazacort 2 -7.1 
Clobetasone 2 -6.8 
Rimexolone 2 -6.8 
Robenacoxib 2 -6.8 
Hydrocortisone probutate 2 -6.8 
Mometasone 2 -6.6 
Diflunisal 2 -6.5 
Lumiracoxib 2 -6.5 
Etoricoxib 2 -6.5 
Clobetasol 2 -6.5 
Apremilast 2 -6.5 
Bisindolylmaleimide I 2 -6.5 
Talniflumate 2 -6.3 
NS-398 2 -6.2 
Firocoxib 2 -5.6 
Dimethyl sulfone 2 -3.0 
   

 
 
6. Concluding Remarks 

 
The social and economic effects of the global COVID-19 pandemic continue to severely affect the 

lives of millions of people worldwide. The presence of animal reservoirs for various potentially 
deadly viruses in the wildlife and the ease of transportation in the current modern world can facilitate 
the global transmission of such infectious agents and make us even more susceptible to the emergence 
of new pandemics in the future. Despite the enormous amount of effort put into discovering effective 
therapeutic agents, so far there is still a lack of specific drugs that could help to treat COVID-19 
patients and thousands of deaths continue to be reported daily due to this disease. This indicates that 
the current methods of drug discovery need to be carefully re-evaluated for the possibilities of 
speeding up the overall process. In this study, we implemented machine learning algorithms, which 
enabled us to rediscover remdesivir, known to have inhibitory activity against SARS-CoV-2 RdRp, 
as well as to identify potential drug candidates that can be evaluated for this problem. We are 
optimistic that further advancements in the application of AI in drug discovery will enable us to 
facilitate the drug discovery process. This is of outmost importance considering the cases like the 
current pandemic, where urgent solutions are necessary and traditional drug discovery process 
timeline is suboptimal, to say the least. 
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